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We present a general treatment of the magneto-optical response from systems of semiconductor nano objects
of arbitrary shapes. Our theoretical hybrid method allows us to simulate the coherent manipulation of the
quantum states of electrons and holes in nano objects and monitor that by means of analysis of the collective
magneto-optical response from the system. As an example of the method implementation we consider the
coherent manipulation of the electronic states of a asymmetrical double InAs quantum dot molecule embedded
in GaAs matrix and the collective magneto-optical properties of a layer of the molecules. Our simulation
results show that changes in the quantum-mechanical configuration of the quantum dot molecules can be
observable by monitoring changes in the ellipsometric data obtained for layers made from these nano objects.
The ellipsometric data clearly represent the quantum mechanics of the molecules.
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I. INTRODUCTION

Semiconductor nanostructured metamaterials potentially
can manipulate electromagnetic fields in the optical range.
The smallest building blocks of these metamaterials are
made from direct-gap semiconductor’s nano objects, such as
quantum dots and quantum dot molecules. At the same time
those objects are expected to play an important role in de-
velopment of new physics and various applications in pho-
tonics as well as in electronics and solid-state quantum
memory.1,2 Progress in modern semiconductor technologies
has allowed us to experimentally and theoretically model the
various semiconductor nanostructures within a wide range of
geometries and material parameters. For instance, it is pos-
sible to fabricate vertically stacked quantum dots �quantum
dot molecules �QDMs�� of high quality and uniformity.3–5

The quantum-mechanical coherent coupling and forming of
molecular states in the stacked quantum dots can be consid-
ered in complete analogy to real molecules. But in contrast to
the real molecules the artificial design of semiconductor
QDMs provides us with the unique opportunity to dynami-
cally manipulate and reconfigure wave functions of electrons
and holes confined in QDM �see, for instance, Refs. 6–15
and references therein�. QDMs have attracted much interest
because they are very likeable candidates for the implemen-
tation of quantum bits.2 From the other side, proper under-
standing of the connection between the electronic-state co-
herent coupling in isolated nano objects and the collective
electromagnetic response of layers assembled from them16 is
a prerequisite to make new nanostructured metamaterials,
with on-demand properties not resembling anything in
nature.17–23 We should conclude that the future development
of the quantum informatics and metamaterial’s quantum op-
tics both require for an extensive investigation of the collec-
tive response of ensembles of semiconductor QDMs.

In order to reach those goals in this theoretical study we
formulate a computational method which allows us to moni-
tor the coherent manipulation of the quantum states of elec-
trons and holes in embedded semiconductor nano objects by
means of the magnetoellipsometry. The influence of the sur-
rounding semiconducting matrix on the polarizability of the

nano objects has been imposed using a generalization of the
hybrid discrete-continuum model.16,24,25 The generalization
allows us to simulate the nano objects of arbitrary shapes.
We show that parameters of the electron and hole quantum
states localized in the nano objects can be retrieved from the
collective magneto-optical response of systems of such nano
objects. As an example of the method implementation we
consider impact of the coherent manipulation of electronic
states in the double vertical lens-shaped circular QDM on the
collective magneto-optical response from a layer of those
nano objects. The manipulation is performed by an external
magnetic field applied upon InAs/GaAs quantum dot mol-
ecules assembled from the dots with substantially different
lateral radii. Recently it was demonstrated that in the asym-
metrical QDM the nonuniform diamagnetic shifts of the low-
est electron-energy levels lead to their anticrossing which
yields in a positive peak of the differential magnetic suscep-
tibility of the system.26 In this paper we show unusual con-
sequences of the nonuniform diamagnetic shifts for the
magneto-optics of layers of asymmetrical QDMs. We treat
the semiconductor QDMs within complete three-dimensional
description which allows us to simulate arbitrary directions
of the external magnetic field �Fig. 1.� in contrast to most of
the calculations done before. It brings up much wider oppor-
tunities to dynamically manipulate electron and hole states in
QDMs. As it was already mentioned changes in magneto-
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FIG. 1. Schematic of the magneto-optics of a layer of embedded
semiconductor quantum dot molecules.
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optical response of a layer of QDMs emerge from the
changes in the quantum-mechanical configuration of the
QDMs. In this paper we demonstrate in detail that the mag-
netoellipsometric data can reproduce an important and clear
information on the quantum mechanics of the molecules.

II. THEORY

A. Hybrid model and discrete dipole approximation

In order to make this paper more self-contained, we will
repeat and reformulate some of the aspects of the theory
presented in Refs. 16, 24, and 25. We consider a system
�layer� of QDMs of characteristic size a embedded into a
semiconductor host matrix, which is transparent for the in-
coming �external� light beam �Fig. 1�. For such a system we
assume ��aL�a, where � is the wavelength of the electro-
magnetic wave and aL is an average distance between
QDMs. It has been shown in Ref. 24 that under those as-
sumptions we can use the hybrid model to describe the op-
tical response of the system by means of polarizabilities of
discrete dipoles embedded into the continues dielectric ma-
trix. All the dipoles are assigned to the xy plane. The incom-
ing light beam has a simple plane-wave character

EX�r� = E0eikmr,

km = ��mk , �1�

k = �k�,kz� = �kx,ky,kz� , �2�

where �m stands for the dielectric constant of the host matrix,
k=� /c is the vacuum wave vector, and � represents the light
frequency.

In the linear discrete dipole approximation �DDA� �see
Refs. 27 and 28, and references therein� the QDM’s excess
dipole strength p follows from Ref. 24

p = �
QDM

dr3�P�r� − Pm�r�� , �3�

where P�r� is the polarization density inside the QDM with
the dielectric constant �QDM and Pm�r� is one of the host
matrix with the dielectric constant �m. The embedded bare
polarizability �JEB is defined with respect to the internal ap-
plied electric field EA �a spatial average of the internal to the
QDM microscopic electric field e�r�� by

p = �JEBEA. �4�

Within the electromagnetic nonlocal discrete description

EA = EL + tJp , �5�

where EL is the classical local field, which is equal to the
external plane-wave field EX in the case of a single QDM,
and tJ is the full electromagnetic self-interaction tensor for the
QDM. The bare polarizability can be obtained by means of
theory.16,29

The embedded dressed polarizability �JED refers to experi-
mental observations and it is defined by

p = �JEDEL. �6�

The elementary relationship between those two kinds of po-
larizability can be written as

�JEB
−1 − �JED

−1 = tJ. �7�

For our system of embedded QDMs in the linear DDA we
can write the local field at the position ri of the ith dipole as

ELi = EXi +
1

�m
�
j�i

fJijp j , �8�

EXi = EX�ri� , �9�

where fJij is the vacuum intercellular �interdipole� transfer
tensor �the dyadic Green’s function in the DDA�Ref. 27��

fJij = fJ�ri − r j� =
exp�ikm�rij�

4	�0�rij


	km
2 �IJ− �r̂ij�r̂ij

T� −
1 − ikm�rij

�rij
2 �IJ− 3�r̂ij�r̂ij

T�
 ,

�rij = ri − r j, �r̂ij =
�rij

�rij

and IJ is the identity dyadic. The induction for the excess
dipole strength’s pi becomes

pi = �JEDi�EXi +
1

�m
�
j�i

fJijp j� . �10�

From Eq. �10� we obtain the system of equations to be
solved

�
j

TJ ijp j = EXi, �11�

where

TJ ij = �ij��JEBi
−1 − tJi� + �1 − �ij�fJij ,

tJi = tJi
S +

i�3

6	�m�0
3IJ,

tJi
S is the static part of the self-interaction tensor to which we

have added the Lorentz radiation damping �the term with �3

above�.
The collective optical response of the system is character-

ized by the reflection and transmission coefficients. They
have to be obtained from the far-field expression of the re-
mote dipole field at a point r far from the layer location.
Using solutions of Eq. �11� we get, for the reflection and
transmission, respectively,

ER�r� = �
i

FJi�r�pi, when z → + �;

ET�r� = EX�r� + �
i

FJi�r�pi, when z → − � , �12�

where
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FJi�r� =
exp�ikm�ri�
4	�0�m�ri

km
2 �IJ− �r̂i�r̂i

T� ,

�ri = r − ri.

After Eq. �12� it is trivial to calculate the transmission and
reflection coefficients of the layer. The formulation of the
systems �11� and �12�, in general, traces a method of simu-
lation of the optical response from an arbitrary system of
semiconductor nano objects embedded into semiconductor

host materials. The larger the tensor matrix TJ ij, the more
interesting problems may be studied. But therefore �if we
would like to consider three-dimensional random arrays of
semiconductor nano objects� the calculation of the matrix

elements of TJ ij required and solution of Eq. �11� are already
tedious problems themselves. So, in this paper we confine
ourselves to a single layer �two-dimensional array� of QDMs
embedded the semiconductor host matrix �Fig. 1�

In the case of a two-dimensional square lattice of QDMs
of the lattice parameter aL the calculation of the optical re-
sponse of the embedded layer can be performed on the base
of the Vlieger’s expression30,31

ER�r� = FJ�r�pef , �13�

where

FJ�r� =
ikm

2 eikmr

2�0�maL
2kmz

�IJ− �k̂m�k̂m
T �

is the Vlieger’s remote interplanar transfer tensor, km=k�

−kzẑ and the effective dipole pef induced in the layer is ob-
tained from

pef = �IJ− �JEBfJ�−1�JEBE0,

fJ=
fJS

4	�0�maL
3 + tJS +

i�km
2 IJ− �k�m�k�m

T − kmz
2 ẑẑT�

2�0�maL
2kmz

, �14�

fxx
S = fyy

S = −
fzz

S

2
= − 4.51681. �15�

Using the Vlieger’s approach we can determine the reflection
�rss ,rpp� and transmission �tss , tpp� coefficients, and absor-
bance �Ass ,App� of the layer. For a two-dimensional array
�square lattice� of the dipoles, the coefficients are given
by30,31

rss =
f

Ay cos 
i − f
,

rpp =
f cos 
i

Ax − f cos 
i
−

f sin2 
i

Az cos 
i − f sin2 
i
,

tss = 1 + rss,

tpp =
f cos 
i

Ax − f cos 
i
−

Az cos 
i

Az cos 
i − f sin2 
i
,

Ass�pp� = 1 − 
rss�pp�
2 − 
tss�pp�
2. �16�

Here subscribers “s” and “p” refer to the light polarization
perpendicular and parallel to the plane of incidence, respec-
tively, 
i is angle of incidence

A� = 4	�0aL
3��EB��

−1 − t��� −
f��

S

�m
,

f = 2	iaLkm.

The ellipsometric angles � and � represent the experi-
mental values and can be measured with the highest accu-
racy. They follow from a conventional definition

rpp

rss
= tan �ei�

and also can be calculated numerically.

B. Polarizability and quantum mechanics of QDMs

The hybrid discrete-continuum method allows us to simu-
late the collective electromagnetic response of the layer of
embedded QDMs.24,25 The embedded bare polarizability �JEB
of a single QDM approximated at the near resonance condi-
tions can be written as16,22,24,29,32–34

�JEB��� = �JEB
S + �JD��� , �17�

where �JEB
S is the static part of the polarizability35,36 of the

QDM �to be treated later� and

�JD��� =
e2

�
�

n

rn
�rn

Tfn��� �18�

is the dynamic part of the polarizability. In the equations
above: rn stands for the optical transition-matrix
element16,29,37

fn��� = � En

��
�	 1

�n − � − i�n

 �19�

is the frequency-dependent function introduced in Refs. 16
and 29, which depends on transition energies En=��n of the
resonance optical transitions of the QDM and corresponding
damping factors �n, e is the elementary charge. Faraday/Kerr
or Cotton/Mouton-type magneto-optical effects are not taken
into account here.

To find the static part of the polarizability tensor �JEB
S we

implement the following boundary-value problem for a local
electrostatic potential ��r� in a complex three-dimensional
cubic domain of the host material including one QDM �Refs.
35 and 36�

�r���r��r��r�� = 0,

− L � � � L, � = �x,y,z� , �20�

where

MAGNETO-OPTICS OF LAYERS OF DOUBLE QUANTUM… PHYSICAL REVIEW B 80, 155442 �2009�

155442-3



��r� = ��QDM, when r is inside QDM

�m, when r is outside QDM
� .

An isolated QDM is located in the center of the domain and
L�a. We solve the problem �20� in conjunction with three
sets of the boundary conditions

sx���r�
−L,y,z = ��r�
x,�L,z = ��r�
x,y,�L = 0

��r�
+L,y,z = 2LE0
� ,

sy���r�
x,−L,z = ��r�
�L,y,,z = ��r�
x,y,�L = 0

��r�
x,+L,z = 2LE0
� ,

sz���r�
x,y,−L = ��r�
�L,y,z = ��r�
x,�L,z = 0

��r�
x,y,+L = 2LE0
� . �21�

The solutions give us the space distribution of the electric
field E�r�=−���r� and polarization density P�r�=�0���r�
−1�E�r� when the external uniform electric field E0 is par-
allel to x̂, ŷ, or ẑ correspondingly. Following the scheme
described above the static parts of the embedded bare polar-
izability, embedded dressed polarizability, and self-
interaction tensor can easily be obtained according to Eqs.
�4�, �6�, and �7� for the appropriate s�

�EB��
S =

d�

Ẽ�

,

�ED��
S =

d�

E0�

,

t��
S = ��EB��

S �−1 − ��ED��
S �−1, �22�

where

Ẽ =
1

V
�

QDM
dr3E�r�

and V is the QDM volume.
For the dynamic part of the polarizability we have to com-

pute the transition energies and wave functions of electrons
and holes confined in the asymmetrical InAs/GaAs QDM. In
our calculations we use a three-dimensional hard-wall con-
finement potential and realistic semiconductor material pa-
rameters �for instance, the band offset of the InAs/GaAs
strained heterostructure, corrected to the strain conditions
band parameters, etc.�. The electron states are described by
means of the effective one-band Hamiltonian,16,38,39 which
can properly describe the strong nonparabolicity in the InAs
conduction band39–41

Ĥe = 	�̂e
1

2me�E,r�
�̂e + Ve�r�
I2 +

�B

2
ge�E,r�� · B ,

�23�

where: I2 is the identity matrix of size 2, �̂e=−i��r
+eA�r� is the momentum operator for electrons, �r is the
spatial gradient, A�r�= 1

2 �B
r� is the vector potential for the
uniform arbitrary directed magnetic field B= �Bx ,By ,Bz�,

me�E ,r� is the energy and position-dependent electron effec-
tive mass

1

me�E,r�
=

2P2

3�2	 1

E + Eg�r� − V�r�

+
1

E + Eg�r� − V�r� + 2��r�
 �24�

and

ge�E,r� = 2�1 −
m0

me�E,r�
��r�

3�E + Eg�r�� + 2��r�� �25�

is the electronic Landé factor. In the equations above: Eg�r�
and ��r� stand for the position-dependent band gap and spin-
orbit splitting in the valence band, P is the momentum ma-
trix element,38,42 � is the vector of the Pauli matrices, �B is
the Bohr magneton, m0 is the free-electron mass, and Ve�r� is
the hard-wall confinement potential for electron

Ve�r� = � 0, when r is inside QDM

Ve
0, when r is outside QDM

� , �26�

where Ve
0 is the conduction-band offset in the InAs/GaAs

quantum dot.
For the proper description of the valence-band �hole�

states in InAs/GaAs quantum dots we should consider multi-
band k ·p Hamiltonian that allow for valence subband mix-
ing �see, for instance, Refs. 14 and 43–46�. For the transition
frequencies being almost at the edge of the gap of the QDM
material the heavy-light hole mixing should be included and
the low-energy hole states can be described by the four-band
Luttinger-Kohn Hamiltonian14,40,41,46,47

Ĥh =
1

2m0�
P̂+ R̂ − Ŝ 0

R̂� P̂− 0 Ŝ

− Ŝ� 0 P̂− R̂

0 Ŝ� R̂� P̂+

� + Vh�r�I4, �27�

where

P̂� = ���1 � �2��̂h�
2 + ��1 � 2�2��̂hz

2 � ,

R̂ = − �3�2�̂h−
2 ,

Ŝ = 2�3�3�̂h−�̂hz.

In the above expressions: I4 is the identity matrix of size 4,
��1 ,�2 ,�3� is a set of the Luttinger parameters, the momen-

tum operators �̂h are defined as the following:

�̂h = − i��r − eA�r� ,

�̂h�
2 = �̂hx

2 + �̂hy
2 ,

�̂h� = �̂hx � i�̂hy

and Vh�r� is the hard-wall confinement potential for holes
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Vh�r� = � 0, when r is inside QDM

Vh
0, when r is outside QDM

� , �28�

where Vh
0 is the valence-band offset in the InAs/GaAs quan-

tum dot.
For an electronic state confined in the QDM the wave

function is presented by the two component spinor

Fel�
�2� �r� = �Fel

↑ �r�
S�
↑�
Fel

↓ �r�
S�
↓� � , �29�

where l stands for the main quantum number, �= ↑ ,↓ refers
to the spin polarization and 
S� is a spherically symmetric
Bloch function.41,42 The envelop wave functions Fel

� �r�
should satisfy the Schrödinger equation

Ĥe��Fel
↑ �r�

Fel
↓ �r� � = Eel��Fel

↑ �r�
Fel

↓ �r� � . �30�

A confined hole state with the main quantum number k can
be written as a four-component Luttinger spinor14,42,47

FhkJ
�4� �r� =�

Fhk
+3/2�r��3

2
,+

3

2
�

Fhk
−1/2�r��3

2
,−

1

2
�

Fhk
+1/2�r��3

2
,+

1

2
�

Fhk
−3/2�r��3

2
,−

3

2
�� , �31�

where �
 3
2 ,+ 3

2 � , 
 3
2 ,− 1

2 � , 
 3
2 ,+ 1

2 � , 
 3
2 ,− 3

2 �� is the conventional
Luttinger-Kohn basis.16,41,42,47 The envelop functions Fhk

Jz �r�
are the components of the hole’s eigenfunction of the Hamil-
tonian �27�

Ĥh�
Fhk

+3/2,��r�
Fhk

−1/2,��r�
Fhk

+1/2,��r�
Fhk

−3/2,��r�
� = Ehk��

Fhk
+3/2,��r�

Fhk
−1/2,��r�

Fhk
+1/2,��r�

Fhk
−3/2,��r�

� . �32�

The above hole states are designated by the main quantum
number k and their chirality v= ⇑ ,⇓. The hole’s chirality is
isomorphic to the electronic spin-quantum number: states
with opposite chirality are orthogonal and they are degener-
ate in the absence of magnetic field.14,15,48,49 We use the com-
puted electron and hole wave functions and energies to simu-
late the dynamic part of the polarizability tensor in Eq. �17�.

III. NUMERICAL RESULTS AND DISCUSSION

Now we apply the strategy developed above to the case of
a layer of double vertical lens-shaped circular quantum dot
molecules. To do this we use realistic semiconductor material
parameters and dimensions of the dots in the molecule
known in literature.15,42,45,50,51 Our molecule consists of two
quantum dots with substantially different radii �L��S and
heights hL�hS �the subscripts L and S indicate “large” and

“small” dots in Fig. 1�. So, the QDM is nonuniform in z
direction. All calculations were performed for the molecule
with the following geometry parameters:5,26 �L=25 nm, �S
=9.5 nm, hL=3 nm, hS=4 nm, and a few interdot �base-to-
base� distances d.

The static parts of the polarizability tensors of the QDM
was calculated with the approach described above using
COMSOL multiphysics package.52 The dielectric constants are
taken like the following: �QDM=�InAs=15.2 for the inside
InAs material and �m=�GaAs=13.1 for the GaAs matrix. Note
that due to the cylindrical symmetry of the QDM, the static
parts of polarizability tensors are diagonal and �xx

S =�yy
S

��zz
S �so, txx

S = tyy
S � tzz

S as well�. The corresponding normal-
ized results for a system with the two-dimensional lattice
parameter aL=100 nm and interdot distance d=10 nm are
given in Table I as an example. The results are used in our
calculations of the magneto-optical response from the layer
of QDMs.

In the first place we simulate the embedded bare polariz-
ability �JEB��� �and the magneto-optical response of the sys-
tem� without excitonic effects �we ignore interaction be-
tween electrons and holes in optical transitions�. Some
excitonic effects in the QDMs are discussed in Appendix.
For the noninteracting electrons and holes �JD��� can be
written as the following:16,29

�JD��� =
e2

�
�

l,�;Jz,k,�
re�;Jz,h�

� re�;Jz,h�
T 
�Fhk

Jz,�
Fel
� �
2fk�,l���� ,

fk�,l���� = �Ek�,l�

��
�	 1

�k�,l� − � − i�k�,l�

 , �33�

where reh stands for the bulk interband optical matrix
element,16,37 ��k�,l�=Ek�,l�=Ehk�+Eel�+Eg present transi-
tion energies of the resonance optical transitions from hole
energy levels �hk�� to electron energy levels �el�� of the
QDM, and �k�,l� stand for the corresponding damping factors
�Eg is the energy gap of the dot’s semiconductor material�.
The hole-electron overlap integrals �Fhk

Jz,� 
Fel
� � should be cal-

culated using the envelop functions Fel�hk�
��Jz,�� from Eqs. �30�

and �32�.
To model the optical transition energies and overlap inte-

grals we determine material parameters for the InAs/GaAs
quantum dot molecule. According to the data from Refs. 14,
26, 44, 45, 50, and 51 we choose for the strained InAs inside
the dot: EgInAs=0.842 eV, �InAs=0.39 eV, meInAs�0�
=0.044 m0, �1InAs=11.65, �2InAs=3.86, and �3InAs=3.87. For
the GaAs surrounding matrix: EgGaAs=1.52 eV, �GaAs
=0.341 eV, meGaAs�0�=0.067 m0, �1GaAs=6.98, �2GaAs

TABLE I. Components of the static parts of embedded polariz-
abilities �JEB�D� and self-interaction tensor tJ of InAs/GaAs QDMs
��0=4	�0aL

3 =11.127
10−32 Fm2�.

�EB
S �ED

S tS

�xx�yy� 5.167
10−4�0 5.119
10−4�0 −18.148
�0
−1

�zz 1.050
10−4�0 0.923
10−4�0 −1310.430
�0
−1
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=2.06, and �3GaAs=2.93. Using these parameters, the band
offsets of conduction band and valence band can be found as:
Ve

0=0.474 eV and Vh
0=0.203 eV. The energies and wave

functions of electrons and holes confined in the QDM are
obtained numerically form solutions of Eqs. �30� and �32� by
the nonlinear iterative method53 using the COMSOL mult-
iphysics package.52

Now we present the transition energies and overlap inte-
grals of noninteracting electrons and holes �excitonic effects
are discussed in Appendix�. We consider three distances be-
tween dots in the QDM: d1=20 nm, d2=10 nm, d3=5 nm,
and three directions of the magnetic field: B�1�= �0,0 ,Bẑ�,
B�2�=

1
�2

�0,Bŷ ,Bẑ�, B�3�= �0,Bŷ ,0�. For the reason of clarity
we concentrate on the optical transitions between four lowest
hole energy states h1�2�� ��= ⇑ ,⇓� and four lowest elec-
tronic states e1�2�� ��= ↑ ,↓� under the condition of the
spin-chirality alignment in the transition. In our general con-
sideration the magnetic field is not parallel to the system
growth direction ẑ. This does not allow us to use any simple
specific selection rules for the interband optical transitions.
Now we should impose the following rule: certain transition
is allowed when the corresponding three-dimensional over-
lap integral cannot be vanished.

For configurations �di ,B�j�� �i , j=1,2 ,3� the lowest tran-
sition energies and corresponding overlap integrals are

shown in Figs. 2–7. It should be noted that according to our
simulation experience �see also Ref. 46� the predominant
components of the Luttinger spinor FhkJz

�4� are those of Jz

= �
3
2 for all involved hole states and the system’s configu-

rations. The components of Jz= �
1
2 always give small corre-

sponding contributions in this energy range. Therefore, for
the optical transitions being considered Jz= �

3
2 components

FIG. 2. Transition energies for d=d1 as functions of magnetic
field at different directions of the magnetic field. Inset: the anti-
crossing region.
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FIG. 3. Overlap integrals �squared absolute values� as functions
of magnetic field for d=d1 and different directions of the magnetic
field �descriptions of the transitions see in Fig. 2�a��.

FIG. 4. Transition energies for d=d3 as functions of magnetic
field at different directions of the magnetic field �descriptions of the
transitions see in Fig. 2�a��.
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give the predominant �95%� contributions to the sum of the
squared overlap integrals in the dynamic part of the polariz-
ability �see Eq. �33��. Using this result in Figs. 3, 5, and 7 we
present only the squared absolute value of �Fhk

+3/2,⇑ 
Fel
↑ �.54

The first crucial difference between results for two dis-
tances d1 and d3 when B=B�1� is the anticrossing of the
electronic energies. For the large distance between dots �d1�
the tunnel coupling between them is weak. The nonunifor-

mity of the QDM geometry in z direction generates the non-
uniform diamagnetic shifts of the electron energies26 which
leads to the anticrossing for e1� and e2� states at B1AC
�10.7 T. The anticrossing was discovered and discussed in
details in Ref. 26. At the same time energy levels for holes
do not anticross within this range of the magnetic field. This
leads to the anticrossing for the energies of h1�→e1� and
h1�→e2� transitions �see inset of Fig. 2�a��. Here we
should stress that the anticrossing manifests redistribution of
the electronic wave function inside the QDM: the electronic
wave function of the state e1� at B1AC relocates from the
large dot to the small one. On the contrary, the second state
e2� relocates from the small dot to the large one. At the
same time, the probability density of the hole state h1� re-
mains to localize in the large dot and the probability density
of the hole state h2�—in the small dot. This leads to the
steplike behavior of the corresponding overlap integrals at
B=B1AC �see Fig. 3�a��. Clearly, when the distance between
the dots in the QDM is large, the magnetic field can drasti-
cally change the overlap integrals for the corresponding op-
tical transitions as it is shown in Fig. 3�a�. The nonuniform
diamagnetic shift also produces crossings between h1�
→e2� and h2�→e1� transition energies at B1C�18.3 T
�Fig. 2�a��. But this crossing appears without relocations of
the electron wave functions and it has no impact on the over-
lap integrals. The small distance �d3� and strong tunnel cou-
pling between dots lead to the strong hybridization between
electronic states e1� and e2�.26,55 This creates molecular
states for electrons with symmetric and antisymmetric con-
figurations along z direction.14,26,55 The diamagnetic shifts
�when B=B�1�� become uniform and no anticrossings �wave
function’s redistributions� or crossings appear �see Figs. 4�a�
and 5�a��.
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FIG. 5. Overlap integrals �squared absolute values� as functions
of magnetic field for d=d3 and different directions of the magnetic
field �descriptions of the transitions see in Fig. 2�a��.

FIG. 6. Transition energies for d=d2 as functions of magnetic
field at different directions of the magnetic field �descriptions of the
transitions see in Fig. 2�a��.
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FIG. 7. Overlap integrals �squared absolute values� as functions
of magnetic field for d=d2 and different directions of the magnetic
field �descriptions of the transitions see in Fig. 2�a��.
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The system with the distance d2 �B=B�1�� presents an
intermediate case when the anticrossing and hybridization
coincide. This is the reason why a weak convergence of the
energies for the transitions h1�→e1� and h1�→e2� and
some typical changes in the overlap integrals can be seen in
Figs. 6�a� and 7�a�. Yet, the energy crossing for the transi-
tions h1�→e2� and h2�→e1� remains at B1C�16.6 T.

To complete the picture of the interplay between of the
distance and magnetic field impacts on the transition energies
and overlap integrals, we show Ekl�B� and 
�Fhk

+3/2,⇑ 
Fel
↑ �
2 for

few directions of the magnetic field in Figs. 2–7. For the
large distance between dots within the QDM �d1� the change
in the magnetic field direction from B�1� to B�2� leads to a
shift of the anticrossing �crossing� point according to the
obvious scaling rule �Fig. 2�b��

B2AC � �2B1AC,

B2C � �2B1C

�note: B2C�25.9 T and the crossing is located out of the
range of Fig. 2�b��. At the same time the overlap integrals at
the anticrossing for the allowed transitions demonstrate some
deviations from the pure steplike behavior. Figure 3�b� pre-
sents a typical manifestation of the changes in the electron
and hole wave function’s distributions between two dots.
Again the decrease in the distance between dots removes the
traces of the anticrossing and the wave function’s relocation
�Figs. 4�b�, 5�b�, 6�b�, and 7�b��. When the magnetic field is
parallel to xy plane �B�3� configuration� the anticrossing and
crossing have disappeared even for d=d1. The overlap inte-
grals being functions on the magnitude of the magnetic field
simply reflect changes in the confinement of the electron and
hole wave functions along z direction in different dots. The
electron states confined in high �small� dot are more sensitive
to the magnetic field. The electron wave functions localized
in the large dot are obviously under strong confinement in z
direction already for B=0 and hardly can be squeezed more
by the magnetic field applied along y direction. At the same
time the sensitivity of the hole wave functions to the mag-
netic field is much weaker, no mater in which dot the func-
tion is localized. The reduction in the interdot distance con-
ventionally hybridizes electron states from different dots.
This finally forms a typical “molecular” magnetic properties
of the QDM as it is shown in Figs. 4�c� and 5�c�.

Using the above discussed quantum-mechanical proper-
ties of the transition energies and overlap integrals we inves-
tigate now the collective magneto-optical response of the
layer of QDMs with the two-dimensional lattice parameter
aL=100 nm. First we combine all our data on the static parts
of the polarizability tensors with the results of the quantum-
mechanical calculations into the complete �JEB��� using reh
=0.6 nm.16,37 Obviously, small damping parameter � en-
sures a clear reflection of the quantum-mechanical properties
of an individual QDM in the collective magneto-optical re-
sponse of the layer of QDMs. At the same time in our theory
� has to be used as a free parameter.16,29 To demonstrate
importance of the parameter value we present in Fig. 8 the
absorbance of the layer of the QDMs in �d1 ;B�1�� configura-
tion for the incidence of 
i=60°. The inset of Fig. 8 gives a

filling of the impact of the parameter on the observation of
the energy gap at the anticrossing of the transition energies
when � is small �see Inset of Fig. 2�a��. The peak in Fig. 8
corresponds to the crossing of the two transition energies
h1�→e2� and h2�→e1� in Fig. 2�a�. In the crossing point
they contribute in resonance simultaneously and this in-
creases the response by the factor of 2. We should stress, that
even for relatively large ��=1 meV the quantum mechanics
of the QDM clearly shows itself from the magneto-optical
data. So, we will set ��=1 meV for all calculations below.
Note, we present here only peaks corresponding to the tran-
sitions considered in Figs. 2–7. Our calculation results show
that we always can distinguish them if ���1 meV.16,24,25,55

The ellipsometric angles � and � can be measured with
the highest accuracy. The direct accessibility of the quantum
information from the QDMs such as individual dipole
strengths, transition energies, and overlap integrals by means
of the measurement of the ellipsometric parameters is one of
the attractive aspects of our approach.

In order to illustrate that we show in Figs. 9–11 relevant
data on the magnetoellipsometry of a layer of InAs/GaAs
QDMs for the incidence of 
i=60°. For the ellipsometric
angle � the results systematically reproduce the transforma-
tion of the quantum-mechanical properties of the individual
QDMs when we change the system configuration from
�d1 ,B�1�� �Fig. 9�a�� to �d3 ,B�3�� �Fig. 11�f��. The variation in
the magnetic field magnitude makes the transformation even
more clear and understandable. At the first glance the anti-
crossing features of the transition energies and overlap inte-
grals are not clear in Figs. 9�a� and 9�b� for �d1 ,B�1�� con-
figuration when ��=1 meV �note, we can see them clearly
if ��=1 �eV�. Yet, the crossing as another result of the
nonuniform diamagnetic shift �pure quantum-mechanical

E (eV)B (T)

A
P

P

Ñ ΓΓΓΓ= 1 meV

Ñ ΓΓΓΓ = 5 µµµµeV

FIG. 8. Absorbance for a monolayer of InAs/GaAS QDMs in
�d1 ,B�1�� configuration.
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phenomenon� obviously shows itself as a combined peak in
Figs. 9�b� and 10�b�. In general the transformations of the
overlap integrals �connected to the changes in electron wave-
function localization� can be easily recognized in Figs. 9 and
10. Therefore we can say that, when the distance between
dots in the QDM is large enough, the magnetic field acts as a
dynamic coupling factor for electron energy states localized
in different dots on the analogy of the interdot distance in the
static approach. At the same time for the interdot distance d3
the ellipsometry simply exhibits the conventional molecular
diamagnetic shift for all directions of the magnetic field �Fig.
11�. For all configurations the variation in both ellipsometric
angles is clearly within the range of any modern
ellipsometer56 which gives us an opportunity to monitor op-
tically coherent dynamic �when B is changing� and static
�when d is changed� transformations and tuning of the elec-
tron wave functions in QDMs.

IV. CONCLUSION

For systems of semiconductor embedded nano objects of
arbitrary shapes we have formulated a modification of the
hybrid discrete dipole approximation. The modification al-
lows us to describe the collective magneto-optical response
of systems of such objects. As an example of the theory
implementation we have performed a comparative study of
the magneto-optical response functions �absorbance and the
ellipsometric angles� for a layer of asymmetrical InAs quan-
tum dot molecules arranged in a square two-dimensional lat-

tice and embedded into GaAs matrix. The response of indi-
vidual embedded QDMs is presented in terms of the excess
polarizability. Static and dynamic parts of the polarizability
�and the self-interaction tensor as well� are determined. Us-
ing the Veliger’s derivation we simulated the ellipsometric
angles of the layer embedded QDMs for a wide range of the
system configuration. We emphasize that the magnetoellipso-
metric data reproduce important information on the quantum
mechanics of the molecules. Varying magnetic field and the
distance between quantum dots within the layer we can in-
vestigate optically the transition from molecular to “atomic”
behavior of the system. This general conclusion remains
valid when excitonic effects are taken into consideration.
Our simulation results clearly suggest measurable values for
the ellipsometric data for any modern ellipsometric setup.
The approach can be potentially useful for simulation and
characterization of new all-semiconductor nanostructured
metamaterials.
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APPENDIX

In this appendix we evaluate some impacts of the possible
formation of the excitonic states in QDMs on the collective
magneto-optical response of the layers of them. The exci-
tonic Hamiltonian for QDM can be written as

Ĥex = Ĥe + Ĥh − e2G�re,rh� , �A1�

where G�re ,rh� is the Green’s function of the Poisson equa-
tion

�0�r���r��rG�r,r��� = − ��r − r�� . �A2�

The exciton wave function �ex�re ,rh� can be expanded in
terms of elements of the tensor product of two vector spaces:
�e�re�, which is spanned by Fel�

�2� �r�, when �Fel
↑ �re� ,Fel

↓ �re��
are solutions of Eq. �30�; and �h�rh�, which is spanned by
FhkJ

�4� �r�, when �Fhk
+3/2,��rh� ,Fhk

−1/2,��rh� ,Fhk
+1/2,��rh� ,Fhk

−3/2,��rh��
are solutions of Eq. �32� �Refs. 2, 44, 57, and 58�

�ex�re,rh� = �
i

ai��e�re� � �h�rh��i, �A3�

where index i stands for a certain possible set of �el ,� ;hk ,��
�a certain optical transition�. We can obtain the excitonic
transition energies Eex

n from the secular equation

det��Eel� + Ehk� + EgInAs − Eex��ij − e2Gij� = 0 �A4�

and define the coefficients ai
n as solutions of the following

system of linear equations:

�
j

��Eel� + Ehk� + EgInAs��ij − e2Gij�aj
n = Eex

n ai
n. �A5�

In the equations above the matrix elements of the Green’s
function are given by

Gij = �
Jz,Jz�

� Fel
� �re�Fel�

�� �re�Vhk;hk�
Jz,�;Jz�,���re�dre, �A6�

where the summations run for Jz�Jz��= �
3
2 , �

1
2 . In Eq. �A6�

Vhk;hk�
Jz,�;Jz�,���re� =� G�re,rh�Fhk

Jz,��rh�Fhk�
Jz�,���rh�drh �A7�

�according to Eq. �A2�� is a solution of the following equa-
tion:

�0�r���r��rVhk;hk�
Jz,�;Jz�,���r�� = − Fhk

Jz,��r�Fhk�
Jz�,���r� . �A8�

If the excitons contribute to the resonance optical transitions,
ignoring quantum nonlocal effects33 the dynamic part of the
QDM polarizability can be written as

�JD��� = �Jex
D ��� =

e2

�
�

n

fn��� �
Jz,i;Jz�,i�

riJz

� ri�Jz�
T ai

n�ai�
n�


 �Fhk
Jz,�
Fel

� ���Fhk�
Jz�,��
Fel�

�� � , �A9�

where i runs over all possible combinations �el ,� ;hk ,�� and

fn��� = �Eex
n

��
�	 1

Eex
n − � − i�n


 .

The dynamic polarizability �Jex
D ��� can be used in the proce-

dure described in Sec. II instead of �JD��� to compute the
magneto-optical response of the system.16,59,60

Taking into consideration four lowest hole energy states
h1�2�� ��= ⇑ ,⇓� and four lowest electronic states e1�2��
��= ↑ ,↓� �as it is described in Sec. III� the exciton Hamil-
tonian was numerically diagonalized after calculation of all
involved matrix elements of the Green’s function �Eq. �A6��.
Using the procedure described in Sec. II and parameters from
Sec. III the ellipsometric angles of a layer of the asymmetric
QDMs with accounting of possible excitonic effects were
simulated.

To keep the paper within certain size limits we confine
ourselves in this Appendix only to �d1 ;B�1�� and �d3 ;B�3��
configurations.61 In Figs. 12 and 13 we show results of our
simulations. Comparing Figs. 12�a� and 12�b� with Figs. 9�a�
and 9�b� one can see that the most important difference is the
obvious excitonic shift of the peak’s positions �down by the
energy axis� and some change �scaling� in the position of the
crossing point: B1C

ex �B1C. The crossing itself is still a result
of the nonuniform diamagnetic shifts for the energies of the
excitons located in the large and small dot. This is a direct
and clear consequence of the nonuniform diamagnetic shifts
of the energies of noninteracting particles discussed in Sec.
III. Before the crossing the exciton in the ground state is
formed by the electron and hole located in the large dot, and
after the crossing the electron and hole are both in the small
dot. The change in B1C is due to the difference in the values
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FIG. 11. Ellipsometric angles for d=d3 and different directions
of the magnetic field: ��a� and �b��—B�1�; ��c� and �d��—B�2�; and
��e� and �f��—B�3�.
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of the excitonic binding energies for the excitons formed by
the particles located in the large dot or small dot. For
�d3 ;B�3�� configuration the excitonic effects play a routine
role: the main difference between Figs. 13�a� and 13�b� with
Figs. 11�e� and 11�f� is just the overall excitonic shift of the
peak’s positions down by the energy axis.3,8,9,12,13,57 We can
conclude that the ellipsometric angles still reproduce changes

in quantum-mechanical states of individual QDMs �now
bound into excitons�. For our asymmetrical QDM the ellip-
sometry data simulated with excitonic effects obviously re-
semble the data simulated without excitonic effects. Possible
excitonic effects always can be accounted like it was de-
scribed in this Appendix.
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